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Pure Reasoning in 12-Month-Old
Infants as Probabilistic Inference
Ernő Téglás,1,2* Edward Vul,3* Vittorio Girotto,4,5 Michel Gonzalez,5

Joshua B. Tenenbaum,6† Luca L. Bonatti7†

Many organisms can predict future events from the statistics of past experience, but humans
also excel at making predictions by pure reasoning: integrating multiple sources of information,
guided by abstract knowledge, to form rational expectations about novel situations, never
directly experienced. Here, we show that this reasoning is surprisingly rich, powerful, and
coherent even in preverbal infants. When 12-month-old infants view complex displays of
multiple moving objects, they form time-varying expectations about future events that are a
systematic and rational function of several stimulus variables. Infants’ looking times are
consistent with a Bayesian ideal observer embodying abstract principles of object motion.
The model explains infants’ statistical expectations and classic qualitative findings about object
cognition in younger babies, not originally viewed as probabilistic inferences.

Exploiting statistical regularities of the en-
vironment predictively, to adapt behavior
to future events, is a basic strategy in bi-

ology. Humans, even in infancy, use observed
frequencies to learn words (1, 2), spatiotemporal
patterns (3, 4), and visual object features (5).
Adults can make rational statistical judgments on
the basis of frequencies of previously experienced
events or summaries of event frequencies (6, 7).
Even nonhuman mammals and many other orga-
nisms use experienced statistical regularities to
modify their behavior (8, 9).

However, humans also excel at reasoning
about novel situations, flexibly combining ab-
stract knowledge and perceptual information
from disparate sources in “one-shot” intuitions
to predict outcomes of events they have never
before directly experienced. We call this ability
“pure reasoning” to distinguish it from more
data-drivenmeans of forming expectations on the
basis of statistical learning or finding patterns
from repeated exposures. To see more clearly the
difference between these two prediction modes
and the one-shot nature of pure reasoning, con-
sider several configurations of colored blocks
arranged on a table (Fig. 1) and the following
judgment: If the table is bumped so that one block
falls off, is it more likely to be red or yellow? If
the blocks are all close to the edges but there are
twice as many red blocks (Fig. 1A), you will
probably respond “red.” However, if the yellow

blocks are precariously stacked and located
near the edge (Fig. 1B), you will likely respond
“yellow.” If the red blocks are located closer to
the edge (Fig. 1C), you may again respond “red,”
although with less confidence, but you may re-
vert to yellow if the precarious yellow stack in the
center is doubled in height (Fig. 1D). People can
make these judgments the first time they see these
displays and make such common-sense predic-
tions in a near-infinite variety of real-world sit-
uations, confidently and quickly. To do so by using
only basic statistical learning mechanisms, record-
ing over many such scenes all the ways any
number of objects can be arranged and all the
ways they tend to fall, would be almost im-
possible. Pure reasoning provides a more power-
ful and flexible approach (10). Considering the
number of blocks of each color and their loca-
tions, together with intuitive knowledge of phys-
ical factors determining how they will move, a
reasoner can construct a sample of ways that each
configuration of blocks might fall if the table is
bumped and then observe, purely within the imag-
ined likely possibilities, which outcome appears

most probable. This ability to flexibly combine
multiple sources of information and knowledge
to predict how a complex situation will unfold is
at the core of human intelligence and is one of the
biggest missing links in building artificial intel-
ligence systemswith humanlike “common sense.”

Our goal is to probe the roots of this remark-
able ability in human infants. Infants’ reasoning
abilities are typically studied by measuring their
looking times to visually presented events as an
index of surprise: Longer looking indicates greater
violation of infants’ expectations relative to their
prior knowledge or greater novelty relative to their
interpretation of habituation stimuli. Looking-
time studies suggest that preverbal infants can
reason about novel events depending on certain
physical outcomes (11, 12); object numerosities
(13); other agents’ beliefs, goals and behaviors
(14–16); and the likely outcomes of simple
random processes (17, 18).

However, the richness, power, and coherence
of infants’ reasoning about future events remain
unclear. Is it anything like the ability of adults to
extrapolate likely future states for scenes such as
those in Fig. 1? When presented with a complex
dynamic environment with multiple objects that
move and may be hidden from view as they
move for several seconds, do infants form appro-
priate expectations about where different objects
are likely to be observed at future times? Do their
expectations about the future vary in systematic
and rational ways over different initial config-
urations of objects in space and different tempo-
ral intervals for prediction?

We addressed these questions by using a com-
bination of novel experiments and computation-
al models (19). Our experiments independently
varied several features of dynamic displays, such
that forming appropriate expectations required in-
fants to quantitatively integrate multiple sources
of perceptual evidence with optimal weights that
vary over time. Across these manipulations, we
kept test events fixed and equal in salience so
that infants’ looking times had the potential to
showvariations in degrees of belief (or conversely,
degrees of surprise) as their expectations changed.
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Fig. 1. Examples of common-sense
predictions based on pure reason-
ing. If the table in this scene is
bumped so that one block falls off
the table onto the floor, is it more
likely to be a red or a yellow block?
Intuitions will vary according to the
number of blocks of each type (A),
their arrangement into more- or less-
precarious stacks and their locations
on the table (B), and interactions
between all these factors (C and D).
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We describe a Bayesian ideal observer model that
predicts infants’ looking times in our studies and
extends to other aspects of infants’ reasoning
about the physical world, giving a unifying expla-
nation of several classic results in infant cognition.
This model shows how powerful pure reasoning
capacities could derive from the operation of prob-
abilistic inference mechanisms constrained by
abstract principles of how objects act and interact
over time.

Pure reasoning at 12 months. We probed
preverbal infants’ expectations about unknown
future events when they witness dynamic scenes
that containmultiple potentially relevant–but also
potentially conflicting–sources of information,
similar to (but simpler than) the examples in Fig. 1.
Infants viewed movies in which four objects of
two types, identified by different shapes and col-
ors, bounced randomly inside a container with an
opening on its lower side (movies S1 to S5). After
several seconds of observed motion, an occluder
covered the container’s contents from view for
some duration between 0 and 2 s. Finally, one

object visibly exited through the bottom opening,
and the occluder faded out. Monitoring infants’
looking time to this final outcome allowed us to
assess how surprised infants were to see an object
of either type exit first.

Twelve kinds of movies were generated by
manipulating three factors relevant to predicting
these outcomes: the number of objects of each
type in the scene (three instances of one type and
one of the other type), their physical arrangement
(objects of one type were always closer to the exit
before occlusion than objects of the other type),
and the duration of occlusion (0, 1, or 2 s). Form-
ing correct expectations here requires the ability
to integrate these three information sources, guided
by abstract knowledge about how objects move:
at a minimum, qualitative knowledge about solid-
ity (objects are unlikely to pass through walls)
and spatiotemporal continuity (objects tend to
move short distances over brief time intervals).
Infants appear to be sensitive to each of these
information sources and knowledge systems in-
dividually (11, 20). We asked whether they can

also integrate them rationally to predict single
future events.

A rational prediction of which object type
will exit first should depend on both the number
and the physical arrangement of the object types,
but the relative importance of these factors should
vary with occlusion duration. After a very brief
occlusion, the objects’ locations before occlusion
are most predictive of which object type will exit
first; however, when the occlusion is prolonged,
proximity to the exit matters less because the
objects continue moving in the container. Even-
tually, after a sufficiently long occlusion, only the
number of each object type should be predictive.

In each of three experiments, infants saw four
displays varying in whether the object that exited
first belonged to the type with one or three
instances and whether that type was near or far
from the exit before occlusion. Occlusion dura-
tionwas varied across experiments (Fig. 2A).Mean
looking times (M) across all 12 displays showed
exactly the rational pattern of predictions described
above (Fig. 2, B toD). In experiment 1, with longest
occlusion times (2 s), infants looked longer when
the single unique object exited the container first
[(M3-instances) = 11.9 s,M1-instance = 15.6 s;F(1, 19) =
5.66, P = 0.028 under a repeated measures
analysis of variance (ANOVA)], but distance
from the exit had no effect [MNear = 13.5 s,MFar =
14.2 s; F(1, 19) = 0.69, P = 0.42]. In experiment
2, with intermediate occlusion times (1 s), infants
considered both factors, looking longer at the
unique object outcome [M3-instances = 11.8 s,
M1-instance = 15.0 s; F(1, 19) = 4.65, P = 0.04]
and also when an object located far from the
opening before occlusion exited first [MNear =
11.6 s,MFar = 15.1 s; F(1, 19) = 5.22, P= 0.03].
In experiment 3 with occlusion time of 0.04 s,
looking timeswere insensitive to type numerosity
[M3-instances = 14.0 s,M1-instance = 12.4 s; F(1, 19) =
0.65, P = 0.43] but were significantly longer when
an object far from the exit left the container first
[MNear = 10.2 s,MFar = 15.7 s; F(1, 19) = 16.5, P=
0.0007]. Numerosity and distance did not inter-
act in any experiment [F(1, 15) = 0.007, P= 0.93;
F(1, 17) = 2.09, P = 0.17; F(1, 13) = 1.2, P =
0.29, respectively], suggesting that infants tended
to consider both cues additively.

A Bayesian model of infants’ pure reasoning.
These experiments show that infants possess
surprisingly sophisticated abilities to integrate
multiple information sources and abstract knowl-
edge in reasoning about future outcomes. We now
analyze infants’ expectations more quantitatively
by comparing them with those of a Bayesian ideal
observer equipped with only minimal computa-
tional resources and the minimal abstract knowl-
edge about physical objects that, according to
classic research, young infants possess.

The observer’s knowledge of object dynamics
is expressed in the form of a probabilistic model
embodying the principles of solidity and spatio-
temporal continuity described above. These prin-
ciples can be formalized as a prior P(St|St–1) on
how the state St of the world at time t depends

Fig. 2. Experiments probing infants’ expectations in dynamic physical scenes. (A) Infants saw three objects
of one type and one object of another type bouncing randomly inside a container. After some time, an
occluder masked the objects, and one of four outcomes occurred: An object exited the container through
the bottom opening that was either the common object kind or the unique object, with a position before
occlusion that was either far from or near to the exit. The graph reports mean looking time (s, with SEM)
of three experiments varying the duration of occlusion before the outcome. (B) After a short (0.04 s)
occlusion, infants considered only the physical distance in forming their expectations, disregarding the
number of objects of each type. (C) When occlusion duration was increased to 1 s, infants’ looking times
reflected both the number of objects of each type and their distance from the exit. (D) When the occlusion
was longer still (2 s), infants’ looking times reflected only the numerosities of each object type, regardless
of their preocclusion distance from the exit.
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probabilistically on the state at time t – 1, which for
simplicity we express as constrained Brownian
motion: Objects move by accumulating small in-
dependent random spatial perturbations over time,
subject to the constraint that they cannot pass
through solid barriers (fig. S1).

The observer must also be equipped with
some mechanism of inference and some notion
of computational resources. Following state-of-
the-art approaches in artificial intelligence and
Bayesian models of adult cognition (21–24), we
assume that predictions are computed approxi-
mately by Monte Carlo sampling. This process
corresponds to a kind of hypothetical reasoning:
Given a particular observed scenario, the observ-
er has the capacity to consider possible future
states of the world as they may unfold according
to the observer’s probabilistic model. A similar
intuition for grounding probabilistic reasoning in
representations of possible worlds was the basis
for classic “mental models” accounts of adult
cognition (25), although our treatment differs
in explicitly formalizing probabilistic principles
of knowledge representation and inference.
Formally, the probability of a final outcome DF

given the observed data D0,…,F–1 is approxi-
mated as a sum of the scores of K hypothetical
trajectories (sequences of states S0,…,F),

PðDF jD0,...,F−1Þº ∑
K

k¼1
PðDF jSkFÞ

$ ∏
F

t¼1
PðDt−1jSkt−1ÞPðS

k
t jS

k
t−1Þ ð1Þ

where the score is a product over time steps t
of how well the kth hypothesis fits the observed
data PðDtjSkt Þ and how probable it is under the
prior on object dynamics PðSkt jSkt−1Þ. Intuitively,
an observed outcome is expected insofar as many
predicted future trajectories are consistent with
it or unexpected if it is consistent with few pre-
dicted trajectories.

In this analysis, computational resources corre-
spond to the number of hypothetical trajectories
(the samples) that an observer can construct. In
the limit of infinite samples, these Monte Carlo
predictions correspond exactly to the posterior
beliefs of the ideal Bayesian observer. This ideal
observer forms expectations about which object
will emerge first that are very similar to the pat-
tern of looking times exhibited across our three
experiments, trading off the influences of type
numerosity and proximity,modulated by occlusion
duration, just as infants do (Fig. 3). Note that be-
cause infants’ looking times are typically inversely
related to expectations, we compare looking times
to 1 – P(outcome) (26). Evaluated quantitatively,
the modeled outcome probabilities explain 88%
of the variance in infants’ mean looking times
across the 12 experimental conditions (r = 0.94,
df = 10, P < 0.0001). By comparison, each of the
three stimulus factors that wemanipulated explains
significantly less variance across these 12 condi-
tions: occlusion duration, 1%; type numerosity,
12%; and proximity, 47%. Even their best linear

combination explains only 61% of variance, with
the added cost of two ad hoc free parameters.

In contrast to this analysis, infants—or, indeed,
adults (22–24)—are unlikely to considermore than
a small sample of possible trajectories. According-
ly, we have also analyzed the model under severe
resource bounds, by using just one or two trajectories
sampled from the Bayesian posterior to form ex-
pectations. Averaged over simulated participants
and trials, this bounded model makes inferences
almost identical to the Bayesian ideal (figs. S5
and S6) [r(10) = 0.92,P < 0.05; r(10) = 0.93,P <
0.05]. Thus even with very limited processing
capacity, infants could make appropriate proba-
bilistic predictions in our task.

Modeling infants’ probabilistic and physical
intuitions. If infants’ expectations in our exper-
iments truly reflect the origins of a broad “com-
mon sense” physical reasoning capacity and if
this capacity is captured by our Bayesian model,
then the same model should be able to account

for expectations about a wider range of develop-
mental situations.

Recent studies have suggested that infants
and young children understand simple random
processes. Observing the random drawing of
some balls from a box containing differently
colored balls, infants expect colors in the sample
to be representative of proportions in the larger
population, and vice versa (18). Probabilistic ex-
pectations may also be induced by the structure
of environmental constraints, not only the dis-
tribution of object properties. For instance, when
3- and 5-year-olds (17) and 12-month-olds see a
single ball bouncing within a bounded box con-
taining three exits on one side and one on the
opposite side, they anticipate that the ball will exit
from the three-exit side; however, if the three-
exit side is obstructed, such anticipation is absent.
Our model explains all these results with no fur-
ther assumptions (fig. S2 and Fig. 4). Spatiotempo-
ral continuity as captured by the Brownianmotion

Fig. 3. The ideal Bayesian observer model. Starting with an unambiguous parse of the world into the two
types of objects and their preocclusion positions (A), the model predicts the probability for each object type
to be the first to exit as a function of occlusion duration and preocclusion distance from the exit. (B) The
joint probability that a particular type of object exits at a particular point in time can be computed from a
large number of Monte Carlo samples for each of the two starting scenarios. (C) Given the observation that
an object first emerges at a particular time, we compute the conditional probability that it is of one type or
another. (D) The predictions for our experiment consider only three points from the continuous distribu-
tions over time, corresponding to short (0 s; yellow), medium (1 s; green), and long (2 s; red) occlusion
delays. (E) We combine these conditional probabilities from both starting scenarios to predict the joint
effects of distance, object type numerosity, and occlusion duration on infants’ expectations about which
object type will emerge first, as found in experiments 1 to 3 (compare with looking-time data shown in
Fig. 2, B to D). (F) Correlation between the model predictions (x axis) and infant looking times (y axis, s
with SEM) in our three experiments. Each data point corresponds to one experimental condition.
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prior drives the basic expectations about random-
ness, whereas the solidity constraint on Brownian
motion incorporates the physical restrictions on
possible or likely outcomes for each display.

Under the same physical principles, ourmodel
also explains classic findings on how young in-
fants use visual motion to parse the world into a
determinate number of objects. Infants’ expecta-
tions were not originally viewed as rational prob-
abilistic inferences nor analyzed quantitatively, but
our model shows how they can be understood in
these terms. In onewell-known class of ambiguous
displays (27), a foreground object occludes what
could be two disconnected shorter objects or a
single longer object with two parts extending
above and below the occluder (Fig. 5A). When
the display is static, infants show no preference
for the one-object or two-object interpretation,
but when the two parts move synchronously be-
hind the occluder, infants expect they form a
single object and are surprised if shown that they
are two separate objects (Fig. 5B). Our model
predicts this result by virtue of its stochastic prior
on object motion and a natural version of Occam’s
razor that results from Bayesian inference under
such a prior. It is certainly possible for the two
parts to move synchronously left and right if they
are two independent objects, but it is a coinci-
dence: just one of many possible ways that two
objectsmoving independently and randomly could
move and thus relatively unlikely. However, syn-
chronous motion must always occur if the two
parts are two sides of a single rigid object, and thus
a one-object interpretation receives much higher
posterior probability for a Bayesian observer (Fig.

5C). When the objects are stationary, in contrast,
there is essentially no evidence either way, and the
observer is indifferent.

In another class of ambiguous displays, an ob-
ject emerges from alternate sides of a single large
occluding screen or a split screen with a visible
gap in the middle (28) (Fig. 5D). Only one object
is ever visible at a time, but the motion could be
produced by either a single object traveling behind
the occluder(s) or else two objects successively
emerging from opposite sides. Infants are sur-
prised to see this scene with the visible gap if they
have previously seen only a single object placed
behind the screen (28) (Fig. 5, D and E) but not if
they have previously seen two objects. Our ideal
observer forms the same expectations: Two ob-
jects can easily produce thismotionwithout appear-
ing in the visible gap, but a single object can do
so only if it takes a physical jump across the gap
in a single time step, which is possible but highly
unlikely under the Brownian motion prior (Fig.
5F). Moreover, both infants and our model make
the inverse inference: Seeing an object emerge
from both sides of the split screen without appear-
ing in the visible gap, they expect there to be two
objects behind the screen rather than one (29, 30)
(fig. S4). Lastly, both infants and our model can
use the spatiotemporal relations between the speed
of an object, the size of the occluder, and the dura-
tion of the delay between an object’s disappear-
ance behind an occluder and reappearance on the
other side to infer the likely existence of one or
two objects (31) (fig. S3).

Across all the studies described above, our
model is able to capture the main ordinal trends

in how infants’ looking times vary by condition,
but it does not provide the stronger quantitative
fits that we found for our experiments (Fig. 3F).
Differences in the model’s subjective prob-
abilities are often too extreme relative to the ob-
served differences in infants’ looking times (e.g.,
Figs. 4, E and F, and 5, E and F). There are sev-
eral possible reasons for this, which suggest ways
that future modeling and experimental studies of
infant reasoning could be improved. Previous
experimental work adopted a variety of designs
intended only to uncover qualitative effects of
binary stimulus manipulations on looking times;
typical studies report data from few conditions,
often using qualitatively different test events across
experiments or conditions. In contrast, our exper-
iments parametrically varied multiple dynamical
aspects of scenes while keeping test events fixed,
allowing for a more sensitive test of model pre-
dictions. More quantitative predictions for the
classic phenomena described above could be tested
with novel parametric designs such as those used
in our experiments.

There are also several ways that our modeling
approach can be improved and refined. Assum-
ing a linear relationship between outcome proba-
bilities and looking times is too simple, and future
work should explore more complex, nonlinear
dependencies such as log-likelihoods or information-
theoretic measures of surprise (32). The rich liter-
ature on infants’ object perception suggests a need
for more sophisticated ideal-observer models, with
a more detailed specification of how infants rep-
resent the physical properties of objects (33, 34).
Lastly, an ideal-observermodel, evenwith resource
and processing constraints, provides only a coarse
approximation to the psychological mechanisms
of infant cognition.Amore fine-grained processing
model might make stronger quantitative predic-
tions for a broader range of experimental designs.
Still, it is intriguing that,with onlyminimal assump-
tions about infants’ computational resources and
their knowledge of object motion, we can explain
some of the most basic, early developing abilities
to parse the world into a discrete set of objects as
rational probabilistic inferences.

Conclusion. Preverbal infants’ ability to reason
about complex unseen events is surprisingly so-
phisticated: 12-month-olds can represent the cru-
cial spatial, temporal, and logical aspects of dynamic
scenes with multiple objects in motion and inte-
grate these cues with optimal context-sensitive
weights to form rational expectations consistent
with a Bayesian observer model. Although classic
work in judgment and decision-making has sug-
gested that people often fail to follow Bayesian
principles in deliberate, explicit reasoning, Bayes-
ian models have recently provided compelling
accounts of more intuitive, implicit inference and
prediction abilities in adults and older children
(35, 36). The present studies carry this approach
further back to the roots of cognition by dem-
onstrating a systematic relation between infants’
looking times and rational probabilistic expecta-
tions in a complex task.

Fig. 4.Model predictions
for infants’ expectations
about randomevents. (A)
Schematic representation
of experiments from
(17). Infants saw scenes
similar to those of the
current experiments, with
long preexit occlusions
(2 s). (B) Infants’ mean
looking times were lon-
ger when an object of
the less-numerous type
exited (means in s, with
SEM). (C) The model’s
predictions for the rela-
tive probabilities of which
object type is more likely
to exit. (D) When a bar-
rier separated the objects
of the more numerous
kind from the exit, (E) in-
fants looked longer when one of these objects exited, indicating that they took the physical constraints of
the scene into account. (F) The solidity constraint of our model yields matching predictions: The common
objects are unlikely to “jump” over the barrier and thus unlikely to exit. In another paradigm (G), older
children see a ball bouncing inside a box with three exits on one side and one exit on the opposite side.
After the display is occluded, the ball exits the box. (H) Children are slower to react when the ball emerges
from the one-exit side. (I) The model’s constrained Brownianmotion predicts that the ball is more likely to
exit from the three-exit side.
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It is unclear how exactly the workings of our
model correspond to the mechanisms of infant
cognition, but the strong model fits suggest at
least a qualitative similarity between the two. We
suggest that the commonality lies in the ability to
generate physically plausible candidates for future
world states, consistent with the observed present.
More work is needed to discover the precise form
of the representations infants use to effectively
construct and weight these hypotheses.

How do these sophisticated inferential abil-
ities arise in development? We have emphasized
their one-shot nature: Just as with adults’ expecta-
tions in Fig. 1, infants’sensitivity to graded outcome
probabilities in our displays varies systematically
and rationally with the numerosities of different
object types, their spatial configuration, and oc-
clusion duration but does not depend on seeing
these displays many times as needed for tradi-
tional statistical learning. However, the statistics
of an infant’s experience could still play a role in
how this capacity is constructed. Pure reasoning
requires the ability to represent the space of
possible future events (37), as well as some ab-
stract knowledge of how physical objects move,
and, although the relevant physical knowledge
could be innate (12), it could also be acquired

through a structured statistical learning approach
(38) from patterns of object movement (39).

More broadly, our work opens the possibility
that a cognitive architecture based on probabi-
listic generative models, complemented by ab-
stract knowledge representations, can account for
early common-sense reasoning beyond the
limited physical domain we explored. Equipped
with richer abstract knowledge, this approach can
explain a wide range of common-sense predic-
tions as the result of pure reasoning, such as the
ability to make rational inferences about other
agents on the basis of core psychological prin-
ciples (15, 40, 41) or the ability to reason about
more challenging physical situations (as in the
displays of Fig. 1) on the basis of more sophis-
ticated physical principles. It thus offers a way to
explain how developing humans may come to
make progressively richer inferences about their
increasingly complex world.
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Experimental Repetitive Quantum
Error Correction
Philipp Schindler,1 Julio T. Barreiro,1 Thomas Monz,1 Volckmar Nebendahl,2 Daniel Nigg,1

Michael Chwalla,1,3 Markus Hennrich,1* Rainer Blatt1,3

The computational potential of a quantum processor can only be unleashed if errors
during a quantum computation can be controlled and corrected for. Quantum error
correction works if imperfections of quantum gate operations and measurements are
below a certain threshold and corrections can be applied repeatedly. We implement multiple
quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations
and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are
realized, and the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is ex-
tremely vulnerable to noise induced by the
environment and thus needs to be protected

with quantum error correction (QEC) techniques.
Pioneering theoretical work in this field has
shown that all errors can be corrected for if im-
perfections of the quantum operations and mea-
surements are below a certain (error) threshold
and the correction can be applied repeatedly (1–3).
Such error thresholds depend on details of the
physical system, and quantifying them requires a
careful analysis of the system-specific errors, the
en- and decoding procedures, and their respective
implementation (4). It is currently accepted that
gate error probabilities ranging from10–4 to 10–5 are
tolerable (5), which seem to be in reach with tech-
nical improvements in conjunction with dynamical
control techniques (6). In addition, fault-tolerant
operation requires highly efficient, repeatable al-
gorithms to minimize the computational over-
head. So far, all experimental implementations
(7–12) are limited to a single correction cycle,
where the only experimental implementation in
a scalable system (10) relies on projective mea-

surements and classical feedback. Because high-
fidelity measurements take time and potentially
disturb the qubit system, it can be advantageous
to use a measurement-free QEC algorithm based
on implicit quantum feedback (4, 7 ). Also, in
contrast to previous expectations (13), these
measurement-free protocols lead to error thresh-
olds comparable to those of their measurement-
based counterparts (14).

We demonstrate repeated QEC with a system
of trapped 40Ca+ ions as qubits, and multiple rep-
etitions of the algorithm are enabled by a toolbox
consisting of high-fidelity quantum operations
(15, 16), an optimized pulse sequence (17), and a
qubit-reset technique that has a negligible effect
on the system of qubits. The performance of the
implementation is assessed with quantum process
tomography in the presence of phase-flip errors,
and its behavior is analyzed for different environ-
ments that show correlated and uncorrelated phase
noise. Our approach is based on the three-qubit
repetition code capable of detecting and correct-
ing phase-flip errors on a single qubit (1, 4). This
algorithm protects against phase noise, which is
the dominant error source in our ion-trap quan-
tum computer, causing gate errors as well as
decoherence.

As indicated in Fig. 1A, each QEC cycle
consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an en-
tangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the

ancillas. Initially, the qubit to be protected is in
the state |Y〉 = a|+〉 + b|−〉, where jT〉 ¼ 1=

ffiffiffi
2

p

ðj0〉 T j1〉Þ, and the two ancilla qubits are both
prepared in the state |1〉. In the encoding stage,
they are mapped into the entangled state a| + + +〉
+ b| − − −〉. Next, a single-qubit phase-flip error
may change |T〉 to |∓〉. In the decoding and
correction stage, the error is identified by a sim-
ple majority vote, and the system qubit is cor-
rected accordingly. It should be noted that this
protocol maps the information in and out of the
protected state between QEC cycles. Each cycle
is concluded by resetting the ancilla qubits while
preserving the information on the system qubit.

The textbook implementation of a single cycle
of this QEC procedure would consist of a circuit
using four controlled-NOT (CNOT) and one con-
trolled controlled-NOT (Toffoli) gate operations
(4) (Fig. 1B). Although the process fidelities of
available CNOT (92%) (18) and Toffoli (80%)
(19) implementations could possibly be improved,
it seems more promising to pursue an approach
based on global Mølmer-Sørensen entangling gate
operations (fidelity of 99%) (15, 20). These opera-
tions provide a universal set of gates in combina-
tion with individually addressed Stark-shift gates
and collective single-qubit rotations (17, 21).More-
over, the optimization procedure of (17) allows
us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates.
Two additional refinements lead to the algorithm
used for the optimization (Fig. 1B). First, the space
of optimized solutions is increased by adding an
arbitrary unitary operation, U, acting only on the
ancillas before resetting them. Second, the en-
coding stage can be simplified by adding an op-
eration, D, and its inverse, D−1, that commutes
with any phase error. As a result, the encoding
stage consists of a single entangling operation,
and the decoding stage can be implemented with
a total of eight pulses with only three entangling
operations (Fig. 1C). Formally, this encoding im-
plements a stabilizer code with the generators
G ¼ fsð1Þy sð2Þz sð3Þy ,sð1Þy sð2Þy sð3Þz g, which are ten-
sor products of the Pauli operatorssðiÞx,y,z acting on
qubit i (4).

The QEC protocol is realized in an experimen-
tal system consisting of a string of three 40Ca+ ions
confined in a macroscopic linear Paul trap. Each
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