On the average size of sets in intersecting Sperner families

TitleOn the average size of sets in intersecting Sperner families
Publication TypeJournal Article
AuthorsBey, C., K. Engel, G. O. H. Katona, and U. Leck
Journal titleDiscrete Mathematics
Year2002
Pages259 - 266
Volume257
Issue2-3
Abstract

We show that the average size of subsets of [n] forming an intersecting Sperner family of cardinality not less than ((n-1)(k-1)) is at least k provided that k less than or equal to n/2 – rootn/2 + 1. The statement is not true if n/2 greater than or equal to k > n/2 – root8n+ 1/8 + 9/8. (C) 2002 Elsevier Science B.V. All rights reserved.

Languageeng
Notes

exported from refbase (http://www.bibliography.ceu.hu/show.php?record=6216), last updated on Tue, 01 Dec 2009 13:30:07 +0100

Publisher linkhttp://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V00-46083F4-3-6&_cdi=5632&_user=7105836&_orig=browse&_coverDate=11%2F28%2F2002&_sk=997429997&view=c&wchp=dGLbVlz-zSkWb&md5=3e8f7ff96ed4ea4f6f9e77c6c6d984f8&ie=/sdarticle.pdf