Title | On the average size of sets in intersecting Sperner families |
Publication Type | Journal Article |
Authors | Bey, C., K. Engel, G. O. H. Katona, and U. Leck |
Journal title | Discrete Mathematics |
Year | 2002 |
Pages | 259 - 266 |
Volume | 257 |
Issue | 2-3 |
Abstract | We show that the average size of subsets of [n] forming an intersecting Sperner family of cardinality not less than ((n-1)(k-1)) is at least k provided that k less than or equal to n/2 – rootn/2 + 1. The statement is not true if n/2 greater than or equal to k > n/2 – root8n+ 1/8 + 9/8. (C) 2002 Elsevier Science B.V. All rights reserved. |
Language | eng |
Notes | exported from refbase (http://www.bibliography.ceu.hu/show.php?record=6216), last updated on Tue, 01 Dec 2009 13:30:07 +0100 |
Publisher link | http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V00-46083F4-3-6&_cdi=5632&_user=7105836&_orig=browse&_coverDate=11%2F28%2F2002&_sk=997429997&view=c&wchp=dGLbVlz-zSkWb&md5=3e8f7ff96ed4ea4f6f9e77c6c6d984f8&ie=/sdarticle.pdf |